ARC–MOF: A Diverse Database of Metal-Organic Frameworks with DFT
Por um escritor misterioso
Descrição
ARC–MOF: A Diverse Database of Metal-Organic Frameworks with DFT-Derived Partial Atomic Charges and Descriptors for Machine Learning
Diversifying Databases of Metal Organic Frameworks for High-Throughput Computational Screening
Revisiting the MIL-101 metal–organic framework: design, synthesis, modifications, advances, and recent applications - Journal of Materials Chemistry A (RSC Publishing) DOI:10.1039/D1TA06238G
ARC–MOF: A Diverse Database of Metal-Organic Frameworks with DFT-Derived Partial Atomic Charges and Descriptors for Machine Learning
Recent advances in computational modeling of MOFs: From molecular simulations to machine learning - ScienceDirect
Expanding Linker Dimensionality in Metal‐organic Frameworks for sub‐Ångstrom Pore Control for Separation Applications - Macreadie - 2023 - Angewandte Chemie International Edition - Wiley Online Library
Large-Scale Refinement of Metal−Organic Framework Structures Using Density Functional Theory
PDF) Inverse design of metal-organic frameworks for direct air capture of CO2 via deep reinforcement learning
Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation
Chemosensors, Free Full-Text
Integrating stability metrics with high-throughput computational screening of metal–organic frameworks for CO2 capture
The top 10 most common a) organic; and b) inorganic substructures in
Leveraging Machine Learning for Metal–Organic Frameworks: A Perspective
de
por adulto (o preço varia de acordo com o tamanho do grupo)