Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the Human Apical Papilla via the Processes of Mechanosensing and Mechanotransduction

Por um escritor misterioso

Descrição

Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
PDF] Fibronectin and stem cell differentiation – lessons from chondrogenesis
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Microenvironmental stiffness mediates cytoskeleton re-organization in chondrocytes through laminin-FAK mechanotransduction
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
ACS Biomaterials Science & Engineering
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Trends in mechanobiology guided tissue engineering and tools to study cell- substrate interactions: a brief review, Biomaterials Research
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Biomimetic substrate control of cellular mechanotransduction. - Abstract - Europe PMC
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Microenvironmental stiffness mediates cytoskeleton re-organization in chondrocytes through laminin-FAK mechanotransduction
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
From mesenchymal niches to engineered in vitro model systems: Exploring and exploiting biomechanical regulation of vertebrate hedgehog signalling - ScienceDirect
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Trends in mechanobiology guided tissue engineering and tools to study cell- substrate interactions: a brief review, Biomaterials Research
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Results of mechanical properties of pristine PDMS substrates and
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Substrate mechanics dictate cell-cell communication by gap junctions in stem cells from human apical papilla - ScienceDirect
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Assessing the combined effect of surface topography and substrate rigidity in human bone marrow stem cell cultures - Ribeiro - 2022 - Engineering in Life Sciences - Wiley Online Library
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
PDF] Fibronectin and stem cell differentiation – lessons from chondrogenesis
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the Human Apical Papilla via the Processes of Mechanosensing and Mechanotransduction
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Assessing the combined effect of surface topography and substrate rigidity in human bone marrow stem cell cultures - Ribeiro - 2022 - Engineering in Life Sciences - Wiley Online Library
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Stiffened fibre-like microenvironment based on patterned equidistant micropillars directs chondrocyte hypertrophy - ScienceDirect
de por adulto (o preço varia de acordo com o tamanho do grupo)