Fused in sarcoma undergoes cold denaturation: Implications on phase separation

Por um escritor misterioso

Descrição

The mediation of fused in sarcoma (FUS) protein liquid-liquid phase separation (LLPS) is generally attributed to the low-complexity and disordered domains, while the role of its folded domains remains unknown. In this work we questioned the role of the folded domains on the full-length (FL) FUS LLPS and studied the influence of several metabolites, ions and overall conditions on the LLPS process using turbidity assays, differential interference contrast microscopy and nuclear magnetic resonance spectroscopy. We demonstrate that FL FUS LLPS is highly responsive to the surrounding conditions, and that overall intrinsic disorder is crucial for LLPS. To promote such disorder, we reveal that the FUS RNA-recognition domain (RRM) and the zinc-finger motif (ZnF) undergo cold denaturation above 0ºC, at a temperature that is determined by the conformational stability of the ZnF domain. We hypothesize that, in cold shock conditions, cold denaturation might provide a pathway that exposes additional residues to promote FUS self-assembly. Such findings mark the first evidence that FUS globular domains may have an active role in stress granule formation in cold stress.
Fused in sarcoma undergoes cold denaturation: Implications on phase  separation
with 1 supplement: 640 Download Scientific Diagram
Fused in sarcoma undergoes cold denaturation: Implications on phase  separation
Nucleation and dissolution mechanism underlying amyotrophic lateral sclerosis/frontotemporal lobar dementia-linked fused in sarcoma condensates - ScienceDirect
Fused in sarcoma undergoes cold denaturation: Implications on phase  separation
Phase transition of FUS protein causes amyotr
Fused in sarcoma undergoes cold denaturation: Implications on phase  separation
Promotion of Liquid–Liquid Phase Separation by G-Quadruplex DNA and RNA
Fused in sarcoma undergoes cold denaturation: Implications on phase  separation
Ectopic biomolecular phase transitions: fusion proteins in cancer pathologies: Trends in Cell Biology
Fused in sarcoma undergoes cold denaturation: Implications on phase  separation
Liquid-liquid phase separation: Fundamental physical principles, biological implications, and applications in supramolecular materials engineering - ScienceDirect
Fused in sarcoma undergoes cold denaturation: Implications on phase  separation
Phase transition and remodeling complex assembly are important for SS18-SSX oncogenic activity in synovial sarcomas
Fused in sarcoma undergoes cold denaturation: Implications on phase  separation
Sofia Ferreira (@Figueirinhalq) / X
Fused in sarcoma undergoes cold denaturation: Implications on phase  separation
Cold Denaturation of the HIV-1 Protease Monomer
Fused in sarcoma undergoes cold denaturation: Implications on phase  separation
Intrinsically disordered protein's coil-to-globule transition and adsorption onto a hydrophobic surface under different conditions
Fused in sarcoma undergoes cold denaturation: Implications on phase  separation
Effect of the number of pipetting strokes on the FUS fluorescence
Fused in sarcoma undergoes cold denaturation: Implications on phase  separation
Comparison of the far UV CD spectra of wild-type IscU and those of four
Fused in sarcoma undergoes cold denaturation: Implications on phase  separation
Biomolecules, Free Full-Text
de por adulto (o preço varia de acordo com o tamanho do grupo)